e-Polymers (Jun 2021)

Ultrasonic-modified montmorillonite uniting ethylene glycol diglycidyl ether to reinforce protein-based composite films

  • He Hua,
  • Jia Rui-jing,
  • Dong Kai-qiang,
  • Huang Jia-wen,
  • Qin Zhi-yong

DOI
https://doi.org/10.1515/epoly-2021-0044
Journal volume & issue
Vol. 21, no. 1
pp. 433 – 442

Abstract

Read online

A novel biodegradable protein-based material (UMSPIE) that consists of natural polymer soy protein isolate (SPI), ultrasonic-modified montmorillonite (UMMT), and ethylene glycol diglycidyl ether (EGDE) was produced by solution casting. Fourier infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TG), and scanning electron microscopy (SEM) were used to characterize the chemical structure and micro-morphologies of as-synthesized protein-based composite films. The results showed that the interlayer structure of MMT was destroyed by ultrasonic treatment, and the hydrogen bonding between SPI chains and the ultrasound-treated MMT plates was enhanced. The synergistic effect of UMMT and EGDE on SPI molecules made the network structure of the UMSPIE film denser. In addition, the mechanical and barrier properties of the as-synthesized films were explored. Compared with pure soy protein film, the tensile strength of the UMSPIE film has an increase of 266.82% (increasing from 4.4 to 16.14 MPa). From the above, the modified strategy of layered silicates filling combining crosslinking agents is considered as an effective method to improve the functional properties of bio-based polymer composites.

Keywords