Journal of Composites Science (Jul 2024)

Analytical Modeling Approaches for the Cyclic Behavior of Concrete-Filled Circular Filament Wounded GFRP Tube Columns

  • Sajan Shakya,
  • Alexandra Hain

DOI
https://doi.org/10.3390/jcs8070259
Journal volume & issue
Vol. 8, no. 7
p. 259

Abstract

Read online

Concrete-filled fiber-reinforced polymer (FRP) tubes (CFFTs) offer an alternative to traditional reinforced concrete columns for new construction applications due to their high strength, ductility, and corrosion resistance properties. Despite their popularity, there is a lack of accurate analytical models for the cyclic/seismic performance of CFFT columns. This is due to the absence of precise stress–strain models for FRP tubes and confined concrete under cyclic loading. Previous experiments on CFFT columns suggest that even minimal reinforcement (≤1%) provides essential energy dissipation for extreme events. However, existing stress–strain models for FRP-confined concrete often neglect the contribution of longitudinal and transverse steel reinforcement. While some researchers have proposed material models to address this issue, the analytical modeling of confinement effects from both steel reinforcement and FRP tubes, especially under lateral cyclic loading, continues to pose a significant challenge. This study aims to use previously collected experimental data to evaluate current analytical modeling approaches in OpenSeesPy3.5.1.12 to simulate the lateral cyclic behavior of CFFT columns with ±55° glass fiber-reinforced polymer (GFRP) fiber orientation. Both the lumped inelasticity and the distributed inelasticity modeling approaches are applied. The performance of various FRP confinement models is compared. The effect of plastic hinge length is also considered in the lumped plasticity approach. The findings suggest that integrating a fiber element section into the plastic hinge zone enhances the efficiency of the distributed inelasticity approach. This method accurately captures the non-linear behavior in the critical region and precisely predicts the shape of the hysteretic curve, all while reducing computational costs. Conversely, the lumped inelasticity modeling approach effectively forecasts energy dissipation and peak load values across the entire cyclic hysteresis curve, offering significant computational savings. Finally, a generalized modeling methodology for predicting the response of CFFTs under cyclic lateral load is proposed and subsequently validated using experimental results found in the existing literature.

Keywords