Symmetry (Jun 2021)
The Application of Dynamic Uncertain Causality Graph Based Diagnosis and Treatment Unification Model in the Intelligent Diagnosis and Treatment of Hepatitis B
Abstract
Although hepatitis B is widespread, it is hard to cure. This paper presents a new and more accurate model for the diagnosis and treatment of hepatitis B. Based on previous research, the diagnosis and treatment modes were combined into one. By adding more influencing factors and risk factors, the overall diagnosis and treatment model will be further expanded, and a richer and more detailed overall diagnosis and treatment model will be constructed. Reverse logic gates are used in the model to improve the accuracy of the treatment planning. The new unified model is more accurate in subdividing diagnosis results, and it is more flexible and accurate in providing dynamic treatment plans. The prediction process and the static diagnosis process of the model are symmetric, and the related sub-graph is symmetric in structure. In addition, an algorithm for predicting the response probability of treatment scheme is developed, so as to predict the subsequent treatment effects of the current treatment scheme, such as the probability of drug resistance. The results show that this method is more accurate than other available systems, and it has encouraging diagnostic accuracy and effectiveness, which provides a promising help for doctors in diagnosing hepatitis B.
Keywords