Jurnal Informatika (Nov 2019)

Kinerja Algoritma Pelatihan Levenberg-Marquardt dalam Variasi Banyaknya Neuron pada Lapisan Tersembunyi

  • Hindayati Mustafidah,
  • Muhamad Zaeni Budiastanto,
  • Suwarsito Suwarsito

DOI
https://doi.org/10.30595/juita.v7i2.5863
Journal volume & issue
Vol. 7, no. 2
pp. 115 – 123

Abstract

Read online

Algoritma pelatihan Levenberg-Marquardt (LM) merupakan algoritma pelatihan yang paling optimal daripada algoritma pelatihan lainnya ditinjau dari eror yang dihasilkan. Kondisi tersebut menggunakan 10 neuron pada lapisan tersembunyi. Banyaknya neuron dalam lapisan tersembunyi yang digunakan dalam proses pembelajaran berpengaruh pada kinerja jaringan. Sebagai kelanjutan dari penelitian sebelumnya, maka dalam penelitian ini dilakukan analisis terhadap kinerja algoritma pelatihan LM ditinjau dari epoh yang diperlukan oleh jaringan menggunakan beberapa variasi banyaknya neuron dalam lapisan tersembunyi. Epoh dipandang sebagai salah satu parameter jaringan syaraf tiruan yang digunakan sebagai tolok ukur kinerja. Tahapan penelitian yang dilakukan adalah membangun program komputer menggunakan MATLAB untuk menjalankan algoritma pelatihan LM, selanjutnya rata-rata epoh jaringan dalam 20 kali perulangan sebagai data penelitian dianalisis menggunakan ANOVA. Algoritma pelatihan LM dijalankan dengan 5, 10, dan 15 neuron pada lapisan input dengan 1 neuron pada lapisan output, dan variasi banyaknya neuron pada lapisan tersembunyi untuk masing-masing banyaknya neuron pada lapisan input. Variasi banyaknya neuron pada lapisan tersembunyi digunakan untuk menemukan kondisi optimal algoritma pelatihan yang berupa rata-rata epoh paling kecil. Hasil analisis menunjukkan bahwa kondisi optimal algoritma peltihan LM dengan 5 neuron pada lapisan input dicapai pada penggunaan 9 neuron pada lapisan tersembunyi dengan rata-rata epoh sebesar 10.80; untuk 10 neuron pada lapisan input dicapai pada penggunaan 19 neuron pada lapisan tersembunyi dengan rata-rata epoh sebesar 21.52; dan untuk 15 neuron pada lapisan input dicapai pada penggunaan 29 neuron pada lapisan tersembunyi dengan rata-rata epoh sebesar 7.38.

Keywords