Dose-Response (Jul 2005)

Structural Changes Revealed by Fourier Transform Infrared and Circular Dichroism Spectroscopic Analyses Underlie tNOX Periodic Oscillations

  • Chinpal Kim,
  • Sara Layman,
  • Dorothy M. Morré,
  • D. James Morré

DOI
https://doi.org/10.2203/dose-response.003.03.008
Journal volume & issue
Vol. 3

Abstract

Read online

A recurring pattern of spectral changes indicative of periodic changes in the proportion of β-structure and a-helix of a recombinant ECTO-NOX fusion protein of tNOX, with a cellulose binding domain peptide, was demonstrated by Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopic analyses. The pattern of structural changes correlated with oscillatory patterns of enzymatic activities exhibited by the protein previously interpreted as indicative of a clock function. The pattern consisted of a repeating pattern of oscillations with a period length of 21 min with five maxima (two separated by 5 min and 3 separated by 4 to 4.5 min) within each 21 min repeat. Oscillatory patterns were not obvious in comparable FTIR or CD spectra of albumin, ribonuclease or concanavalin A. The period length was constant at 5, 15, 25, 35 and 45° C (temperature compensated) and oscillations occurred independently of substrate presence. Spectra obtained in deuterium oxide yielded a longer period length of 26 min both for oscillations in enzymatic activity and absorbance ratios determined by FTIR. Taken together the findings suggest that the regular patterns of oscillations exhibited by the ECTO-NOX proteins are accompanied by recurrent global changes in the conformation of the protein backbone that directly modulate enzymatic activity.