Applied Sciences (Jul 2024)

Enhanced Energy, Conversion Efficiency and Collimation of Protons Driven by High-Contrast and Ultrashort Laser Pulses

  • Weipeng Yao,
  • Ronan Lelièvre,
  • Tessa Waltenspiel,
  • Itamar Cohen,
  • Amokrane Allaoua,
  • Patrizio Antici,
  • Arie Beck,
  • Erez Cohen,
  • Xavier Davoine,
  • Emmanuel d’Humières,
  • Quentin Ducasse,
  • Evgeny Filippov,
  • Cort Gautier,
  • Laurent Gremillet,
  • Pavlos Koseoglou,
  • David Michaeli,
  • Dimitrios Papadopoulos,
  • Sergey Pikuz,
  • Ishay Pomerantz,
  • Francois Trompier,
  • Yuran Yuan,
  • Francois Mathieu,
  • Julien Fuchs

DOI
https://doi.org/10.3390/app14146101
Journal volume & issue
Vol. 14, no. 14
p. 6101

Abstract

Read online

Progress in laser-driven proton acceleration requires increasing the proton maximum energy and laser-to-proton conversion efficiency while reducing the divergence of the proton beam. However, achieving all these qualities simultaneously has proven challenging experimentally, with the increase in beam energy often coming at the cost of beam quality. Numerical simulations suggest that coupling multi-PW laser pulses with ultrathin foils could offer a route for such simultaneous improvement. Yet, experimental investigations have been limited by the scarcity of such lasers and the need for very stringent temporal contrast conditions to prevent premature target expansion before the pulse maximum. Here, combining the newly commissioned Apollon laser facility that delivers high-power ultrashort (∼24fs) pulses with a double plasma mirror scheme to enhance its temporal contrast, we demonstrate the generation of up to 35 MeV protons with only 5 J of laser energy. This approach also achieves improved laser-to-proton energy conversion efficiency, reduced beam divergence, and optimized spatial beam profile. Therefore, despite the laser energy losses induced by the plasma mirror, the proton beams produced by this method are enhanced on all accounts compared to those obtained under standard conditions. Particle-in-cell simulations reveal that this improvement mainly results from a better space–time synchronization of the maximum of the accelerating charge-separation field with the proton bunch.

Keywords