National Science Open (Jun 2023)
Spin-phonon coupling in two-dimensional magnetic materials
Abstract
Recently, two-dimensional magnetic materials (2DMMs) have become a focused research direction in a broad range of two-dimensional materials, due to their underlying significance in fundamental research, as well as in technologically relevant applications for future spintronics, magnonics, quantum information and data storage. The rich toolbox of 2DMMs and their diverse tunability have enabled the unprecedented research concerning the two-dimensional magnetic order down to single atomic layer of materials, much beyond the classical thin film magnetism, showing an extremely promising avenue towards electronics, magneto-optics and photonics. Among various degrees of freedoms, the interaction between spin and phonon (i.e., quanta of lattice vibration), hence the so-called spin-phonon coupling, serves as an important tuning knob to explore the two-dimensional magnetism, creates new types of quasiparticles and controls the magnetic order. This review overviews the latest developments in spin-phonon coupling investigations in 2DMMs. Various techniques utilizing spin-phonon coupling to investigate two-dimensional magnetism are discussed. Recent progress in tuning two-dimensional magnetic order based on spin-phonon coupling is also summarized, with a focus to understand the new functionalities. Furthermore, device developments and concepts based on spin-phonon coupling are briefly discussed. This review will provide our perspectives on the existing challenges and future directions in spin-phonon coupling research in 2DMMs and their functional devices.
Keywords