Scientific Reports (Apr 2018)

Electronic and optical responses of quasi-one-dimensional phosphorene nanoribbons to strain and electric field

  • Longlong Zhang,
  • Yuying Hao

DOI
https://doi.org/10.1038/s41598-018-24521-w
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Electronic and optical responses of zigzag- and armchair-edge quasi-one-dimensional phosphorene nanoribbons (Q1D-PNRs) to strain and external field are comparatively studied based on the tight-binding calculations. The results show that: (i) Zigzag-edge Q1D-PNR has the metallic ground state; applying global strains can not open the gap at the Fermi level but applying the electric field can achieve it; the direct/indirect character of the field-induced gap is determined by the electron-hole symmetry; an electric-field-enhanced optical absorption of low-energy photons is also predicted. (ii) Armchair-edge Q1D-PNR turns out an insulator with the large direct band gap; the inter-plane strain modulates this gap non monotonically while the in-plane one modulates it monotonically; in addition, the gap responses to electric fields also show strong direction dependence, i. e., increasing the inter-plane electric field will monotonically enlarge the gap but the electric field along the width direction modulates the gap non monotonically with three characteristic response regions.