Atmosphere (Jul 2021)

Reduced Sea-Surface Roughness Length at a Coastal Site

  • Yuncheng He,
  • Jiyang Fu,
  • Pak Wai Chan,
  • Qiusheng Li,
  • Zhenru Shu,
  • Kang Zhou

DOI
https://doi.org/10.3390/atmos12080991
Journal volume & issue
Vol. 12, no. 8
p. 991

Abstract

Read online

Sea-surface roughness length is a key parameter for characterizing marine atmospheric boundary layer. Although aerodynamic roughness lengths for homogeneous land and open water surfaces have been examined extensively, the extension of relevant knowledge to the highly inhomogeneous coastal area is problematic due to the complex mechanisms controlling coastal meteorology. This study presented a lidar-based observational analysis of sea-surface roughness length at a coastal site in Hong Kong, in which the wind data recorded from March 2012 to November 2015 were considered and analyzed. The results indicated the turning of wind near the land-sea boundary, leading to a dominative wind direction parallel to the coastline and an acceleration in wind. Moreover, the roughness lengths corresponding to two representative azimuthal sectors were compared, in which the roughness lengths for the onshore wind sector (i.e., 120°–240°) appear to be larger than the constant value (z0 = 0.2 mm) recommended in much existing literature, whereas the values for the alongshore wind sector (i.e., 60°–90°) are significantly smaller, i.e., about two orders of magnitude less than that of a typical sea surface. However, it is to be noted that the effect of atmospheric stability, which is of crucial importance in governing the marine atmospheric boundary layer, is not taken into account in this study.

Keywords