Atmospheric Chemistry and Physics (Jul 2024)
Revisiting the evolution of downhill thunderstorms over Beijing: a new perspective from a radar wind profiler mesonet
Abstract
Downhill thunderstorms frequently occur in Beijing during the rainy seasons, leading to substantial precipitation. The accurate intensity prediction of these events remains a challenge, partly attributed to insufficient observational studies that unveil the thermodynamic and dynamic structures along the vertical direction. This study provides a comprehensive methodology for identifying both enhanced and dissipated downhill thunderstorms. In addition, a radar wind profiler (RWP) mesonet has been built in Beijing to characterize the pre-storm environment downstream of the thunderstorms at the foothill. This involves deriving vertical distributions of high-resolution horizontal divergence and vertical motion from the horizontal wind profiles measured by the RWP mesonet. A case study of an enhanced downhill thunderstorm on 28 September 2018 is carried out for comparison with a dissipated downhill thunderstorm on 23 June 2018, supporting the notion that a deep convergence layer detected by the RWP mesonet, combined with the enhanced southerly flow, favors the intensification of thunderstorms. Statistical analyses based on radar reflectivity from April to September 2018–2021 have shown that a total of 63 thunderstorm events tend to be enhanced when entering the plain, accounting for about 66 % of the total number of downhill thunderstorm events. A critical region for intensified thunderstorms lies on the downslope side of the mountains west to Beijing. The evolution of a downhill storm is associated with the dynamic conditions over the plain compared to its initial morphology. Strong westerly winds and divergence in the middle of troposphere exert a critical influence on the enhancement of convection, while low-level divergence may lead to dissipation. The findings underscore the significant role of an RWP mesonet in elucidating the evolution of a downhill storm.