Polymers (Dec 2020)

Macro-, Micro- and Nanomechanical Characterization of Crosslinked Polymers with Very Broad Range of Mechanical Properties

  • Miroslav Slouf,
  • Beata Strachota,
  • Adam Strachota,
  • Veronika Gajdosova,
  • Vendulka Bertschova,
  • Jiri Nohava

DOI
https://doi.org/10.3390/polym12122951
Journal volume & issue
Vol. 12, no. 12
p. 2951

Abstract

Read online

This work is focused on the comparison of macro-, micro- and nanomechanical properties of a series of eleven highly homogeneous and chemically very similar polymer networks, consisting of diglycidyl ether of bisphenol A cured with diamine terminated polypropylene oxide. The main objective was to correlate the mechanical properties at multiple length scales, while using very well-defined polymeric materials. By means of synthesis parameters, the glass transition temperature (Tg) of the polymer networks was deliberately varied in a broad range and, as a result, the samples changed their mechanical behavior from very hard and stiff (elastic moduli 4 GPa), through semi-hard and ductile, to very soft and elastic (elastic moduli 0.006 GPa). The mechanical properties were characterized in macroscale (dynamic mechanical analysis; DMA), microscale (quasi-static microindentation hardness testing; MHI) and nanoscale (quasi-static and dynamic nanoindentation hardness testing; NHI). The stiffness-related properties (i.e., storage moduli, indentation moduli and indentation hardness at all length scales) showed strong and statistically significant mutual correlations (all Pearson′s correlation coefficients r > 0.9 and corresponding p-values viscosity-related properties (i.e., loss moduli, damping factors, indentation creep and elastic work of indentation at all length scales) reflected the stiff-ductile-elastic transitions. The fact that the macro-, micro- and nanomechanical properties exhibited the same trends and similar values indicated that not only dynamic, but also quasi-static indentation can be employed as an alternative to well-established DMA characterization of polymer networks.

Keywords