BMC Cancer (Dec 2021)
Profiles of immune cell infiltration and immune-related genes in the tumor microenvironment of osteosarcoma cancer
Abstract
Abstract Backgrounds Osteosarcomas are one of the most common primary malignant tumors of bone. It primarily occurs in children and adolescents, with the second highest incidence among people over 50 years old. Although there were immense improvements in the survival of patients with osteosarcoma in the past 30 years, targetable mutations and agents of osteosarcomas still have been generally not satisfactory. Therefore, it is of great importance to further explore the highly specialized immune environment of bone, genes related to macrophage infiltration and potential therapeutic biomarkers and targets. Methods The 11 expression data sets of OS tissues and the 11 data sets of adjacent non-tumorous tissues available in the GEO database GSE126209 were used to conduct immune infiltration analysis. Then, through WGCNA analysis, we acquired the co-expression modules related to Mast cells activated and performed the GO and KEGG enrichment analysis. Next, we did the survival prognosis analysis and plotted a survival curve. Finally, we analyzed the COX multivariate regression of gene expression on clinical parameters and drew forest maps for visualization by the forest plot package. Results OS disease-related immune cell populations, mainly Mast cells activated, have higher cell content (p = 0.006) than the normal group. Then, we identified co-expression modules related to Mast cells activated. In sum, a total of 822 genes from the top three strongest positive correlation module MEbrown4, MEdarkslateblue and MEnavajowhite2 and the strongest negative correlation module MEdarkturquoise. From that, we identified nine genes with different levels in immune cell infiltration related to osteosarcoma, eight of which including SORBS2, BAIAP2L2, ATAD2, CYGB, PAMR1, PSIP1, SNAPC3 and ZDHHC21 in their low abundance have higher disease-free survival probability than the group in their high abundances. Conclusion These results could assist clinicians to select targets for immunotherapies and individualize treatment strategies for patients with OS.
Keywords