BMC Bioinformatics (Oct 2021)
An Ensemble Deep Learning based Predictor for Simultaneously Identifying Protein Ubiquitylation and SUMOylation Sites
Abstract
Abstract Background Several computational tools for predicting protein Ubiquitylation and SUMOylation sites have been proposed to study their regulatory roles in gene location, gene expression, and genome replication. However, existing methods generally rely on feature engineering, and ignore the natural similarity between the two types of protein translational modification. This study is the first all-in-one deep network to predict protein Ubiquitylation and SUMOylation sites from protein sequences as well as their crosstalk sites simultaneously. Our deep learning architecture integrates several meta classifiers that apply deep neural networks to protein sequence information and physico-chemical properties, which were trained on multi-label classification mode for simultaneously identifying protein Ubiquitylation and SUMOylation as well as their crosstalk sites. Results The promising AUCs of our method on Ubiquitylation, SUMOylation and crosstalk sites achieved 0.838, 0.888, and 0.862 respectively on tenfold cross-validation. The corresponding APs reached 0.683, 0.804 and 0.552, which also validated our effectiveness. Conclusions The proposed architecture managed to classify ubiquitylated and SUMOylated lysine residues along with their crosstalk sites, and outperformed other well-known Ubiquitylation and SUMOylation site prediction tools.
Keywords