PLoS ONE (Jan 2012)

IL-6 is not necessary for the regulation of adipose tissue mitochondrial content.

  • Zhongxiao Wan,
  • Christopher G R Perry,
  • Tara Macdonald,
  • Catherine B Chan,
  • Graham P Holloway,
  • David C Wright

DOI
https://doi.org/10.1371/journal.pone.0051233
Journal volume & issue
Vol. 7, no. 12
p. e51233

Abstract

Read online

Adipose tissue mitochondria have been implicated as key mediators of systemic metabolism. We have shown that IL-6 activates AMPK, a mediator of mitochondrial biogenesis, in adipose tissue; however, IL-6(-/-) mice fed a high fat diet have been reported to develop insulin resistance. These findings suggest that IL-6 may control adipose tissue mitochondrial content in vivo, and that reductions in adipose tissue mitochondria may be causally linked to the development of insulin resistance in IL-6(-/-) mice fed a high fat diet. On the other hand, IL-6 has been implicated as a negative regulator of insulin action. Given these discrepancies the purpose of the present investigation was to further evaluate the relationship between IL-6, adipose tissue mitochondrial content and whole body insulin action.In cultured epididymal mouse adipose tissue IL-6 (75 ng/ml) induced the expression of the transcriptional co-activators PGC-1α and PRC, reputed mediators of mitochondrial biogenesis. Similarly, IL-6 increased the expression of COXIV and CPT-1. These effects were absent in cultured subcutaneous adipose tissue and were associated with lower levels of GP130 and IL-6 receptor alpha protein content. Markers of mitochondrial content were intact in adipose tissue from chow fed IL-6(-/-) mice. When fed a high fat diet IL-6(-/-) mice were more glucose and insulin intolerant than controls fed the same diet; however this was not explained by decreases in adipose tissue mitochondrial content or respiration.Our findings demonstrate depot-specific differences in the ability of IL-6 to induce PGC-1α and mitochondrial enzymes and demonstrate that IL-6 is not necessary for the maintenance of adipose tissue mitochondrial content in vivo. Moreover, reductions in adipose tissue mitochondria do not explain the greater insulin resistance in IL-6(-/-) mice fed a high fat diet. These results question the role of adipose tissue mitochondrial dysfunction in the etiology of insulin resistance.