Bioactive Materials (Oct 2022)
Alloyed nanostructures integrated metal-phenolic nanoplatform for synergistic wound disinfection and revascularization
Abstract
New materials for combating bacteria-caused infection and promoting the formation of microvascular networks during wound healing are of vital importance. Although antibiotics can be used to prevent infection, treatments that can disinfect and accelerate wound healing are scarce. Herein, we engineer a coating that is both highly compatible with current wound dressing substrates and capable of simultaneously disinfecting and revascularizing wounds using a metal-phenolic nanoplatform containing an alloyed nanostructured architecture (Ag@Cu-MPNNC). The alloyed nanostructure is formed by the spontaneous co-reduction and catalytic disproportionation reaction of multiple metal ions on a foundation metal-phenolic supramolecular layer. This synergistic presence of metals greatly improves the antibacterial activity against both Gram-negative and Gram-positive pathogenic bacteria, while demonstrating negligible cytotoxicity to normal tissue. In infected rat models, the Ag@Cu-MPNNC could kill bacteria efficiently, promoting revascularization and accelerate wound closure with no adverse side effects in infected in vivo models. In other words, this material acts as a combination therapy by inhibiting bacterial invasion and modulating bio-nano interactions in the wound.