Scientific Reports (Feb 2024)

Vitamin B5 copper conjugated triazine dendrimer improved the visible-light photocatalytic activity of TiO2 nanoparticles for aerobic homocoupling reactions

  • Samira Zamenraz,
  • Maasoumeh Jafarpour,
  • Ameneh Eskandari,
  • Abdolreza Rezaeifard

DOI
https://doi.org/10.1038/s41598-024-52339-2
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 11

Abstract

Read online

Abstract In this work, Cu-vitamin B5 (pantothenic acid) bonded to 2,4,6-trichloro-1,3,5-triazine produced a bioconjugated dendrimer giving rise to the visible-light photocatalytic activity of nanocrystalline TiO2. XPS spectra uncovered the coexistence of Cu(II)/Cu(I) oxidation states with a predominant contribution of Cu(I). The new heterogeneous bio-relevant Cu-photocatalyst (Cu(I) Cu(II) [PTAPA G2-B5] @TiO2) revealed a band gap value [Eg = (2.8 eV)] less than those of Cu free components [PTAPA G1-B5]@TiO2 (3.04) and [PTAPA G2-B5]@TiO2 (3.06) and particularly the bare TiO2 (3.15 eV). The reactions showed to be light-dependent with the best performance under room light bulbs. The photocatalytic efficiency of the as-prepared heterojunction photocatalyst was exploited in the aerobic Csp 2–Csp 2 homocoupling of phenylboronic acid and Csp–Csp homocoupling of phenyl acetylenes under visible-light irradiation to prepare structurally and electronically different biaryls. A radical pathway relying on the photogenerated e− and h+ and involving the Cu(I)–Cu(II) synergistic cooperation was postulated. The reusability and stability of the catalyst were verified by the recycling test, FT-IR spectra, and ICP-OES analysis.