Heliyon (Feb 2024)
Establishment of a diagnostic model based on immune-related genes in children with asthma
Abstract
Objective: Allergic asthma is driven by an antigen-specific immune response. This study aimed to identify immune-related differentially expressed genes in childhood asthma and establish a classification diagnostic model based on these genes. Methods: GSE65204 and GSE19187 were downloaded and served as training set and validation set. The immune cell composition was evaluated with ssGSEA algorithm based on the immune-related gene set. Modules that significantly related to the asthma were selected by WGCNA algorithm. The immune-related differentially expressed genes (DE-IRGs) were screened, the protein-protein interaction network and diagnostic model of DE-IRGs was constructed. The pathway and immune correlation analysis of hub DE-IRGs was analyzed. Results: Eight immune cell types exhibited varying levels of abundance between the asthma and control groups. A total of 112 differentially expressed immune-related genes (DE-IRGs) was identified. Through the application of four ranking methods (MCC, MNC, DEGREE, and EPC), 17 hub DE-IRGs with overlapping significance were further selected. Subsequently, 8 optimized were identified using univariate logistic regression analysis and the LASSO regression algorithm, based on which a robust diagnostic model was constructed. Notably, TNF and CD40LG emerged as direct participants in asthma-related signaling pathways, displaying a positive correlation with the immune cell types of immature B cells, activated B cells, activated CD8 T cells, activated CD4 T cells, and myeloid-derived suppressor cells. Conclusion: The diagnostic model constructed using the DE-IRGs (CCL5, CCR5, CD40LG, CD8A, IL2RB, PDCD1, TNF, and ZAP70) exhibited high and specific diagnostic value for childhood asthma. The diagnostic model may contribute to the diagnosis of childhood asthma.