BMC Bioinformatics (Aug 2024)

GCphase: an SNP phasing method using a graph partition and error correction algorithm

  • Junwei Luo,
  • Jiayi Wang,
  • Haixia Zhai,
  • Junfeng Wang

DOI
https://doi.org/10.1186/s12859-024-05901-8
Journal volume & issue
Vol. 25, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Background The utilization of long reads for single nucleotide polymorphism (SNP) phasing has become popular, providing substantial support for research on human diseases and genetic studies in animals and plants. However, due to the complexity of the linkage relationships between SNP loci and sequencing errors in the reads, the recent methods still cannot yield satisfactory results. Results In this study, we present a graph-based algorithm, GCphase, which utilizes the minimum cut algorithm to perform phasing. First, based on alignment between long reads and the reference genome, GCphase filters out ambiguous SNP sites and useless read information. Second, GCphase constructs a graph in which a vertex represents alleles of an SNP locus and each edge represents the presence of read support; moreover, GCphase adopts a graph minimum-cut algorithm to phase the SNPs. Next, GCpahse uses two error correction steps to refine the phasing results obtained from the previous step, effectively reducing the error rate. Finally, GCphase obtains the phase block. GCphase was compared to three other methods, WhatsHap, HapCUT2, and LongPhase, on the Nanopore and PacBio long-read datasets. The code is available from https://github.com/baimawjy/GCphase . Conclusions Experimental results show that GCphase under different sequencing depths of different data has the least number of switch errors and the highest accuracy compared with other methods.

Keywords