Sensors (Jan 2020)

A Wrapper Feature Selection Algorithm: An Emotional Assessment Using Physiological Recordings from Wearable Sensors

  • Inma Mohino-Herranz,
  • Roberto Gil-Pita,
  • Joaquín García-Gómez,
  • Manuel Rosa-Zurera,
  • Fernando Seoane

DOI
https://doi.org/10.3390/s20010309
Journal volume & issue
Vol. 20, no. 1
p. 309

Abstract

Read online

Assessing emotional state is an emerging application field boosting research activities on the topic of analysis of non-invasive biosignals to find effective markers to accurately determine the emotional state in real-time. Nowadays using wearable sensors, electrocardiogram and thoracic impedance measurements can be recorded, facilitating analyzing cardiac and respiratory functions directly and autonomic nervous system function indirectly. Such analysis allows distinguishing between different emotional states: neutral, sadness, and disgust. This work was specifically focused on the proposal of a k-fold approach for selecting features while training the classifier that reduces the loss of generalization. The performance of the proposed algorithm used as the selection criterion was compared to the commonly used standard error function. The proposed k-fold approach outperforms the conventional method with 4% hit success rate improvement, reaching an accuracy near to 78%. Moreover, the proposed selection criterion method allows the classifier to produce the best performance using a lower number of features at lower computational cost. A reduced number of features reduces the risk of overfitting while a lower computational cost contributes to implementing real-time systems using wearable electronics.

Keywords