AppliedChem (Jul 2024)

Effect of Crystallization on Electrochemical and Tribological Properties of High-Velocity Oxygen Fuel (HVOF)-Sprayed Fe-Based Amorphous Coatings

  • Abdul Qadir Abbas,
  • Muhammad Arslan Hafeez,
  • Cheng Zhang,
  • Muhammad Atiq-ur-Rehman,
  • Muhammad Yasir

DOI
https://doi.org/10.3390/appliedchem4030017
Journal volume & issue
Vol. 4, no. 3
pp. 270 – 281

Abstract

Read online

An Fe-based amorphous coating, with the composition Fe48Cr15Mo14C15B6Y2, was synthesized by the high-velocity oxygen fuel spray (HVOF) process on a substrate of AISI 1035. The effect of crystallization on the electrochemical and tribological properties of the HVOF-sprayed Fe-based coating was systematically studied. The XRD results validated the fully amorphous nature of the as-sprayed coating by showing a broad peak at 43.44° and crystallization of this coating after heat-treatment at 700 °C by demonstrating sharp peaks of Fe-, Mo-, and Cr-based carbides. After crystallization, an increase in the corrosion current density from 4.95 μAcm−2 to 11.57 μAcm−2 and in the corrosion rate from 4.28 mpy to 9.99 mpy, as well as a decrease in the polarization resistance from 120 Ωcm2 to 65.12 Ωcm2, were observed, indicating the deterioration of the corrosion resistance of the as-sprayed Fe-based coating. This can be attributed to the formation of porous ferrous oxide, providing an easy channel for charge transfer and promoting pit formation. However, a decrease in the coefficient of friction from 0.1 to 0.05 was observed, highlighting the significant improvement in the wear resistance of the Fe-based coating after crystallization. This can be associated with the precipitation of hard carbides (MxCy) at the boundaries of the crystallized regions.

Keywords