Cubo (Aug 2023)

Stability of ternary antiderivation in ternary Banach algebras via fixed point theorem

  • Mehdi Dehghanian,
  • Choonkil Park,
  • Yamin Sayyari

DOI
https://doi.org/10.56754/0719-0646.2502.273
Journal volume & issue
Vol. 25, no. 2
pp. 273 – 288

Abstract

Read online

In this paper, we introduce the concept of ternary antiderivation on ternary Banach algebras and investigate the stability of ternary antiderivation in ternary Banach algebras, associated to the $(\alpha,\beta)$-functional inequality: \begin{align*} &\Vert \mathcal{F}(x+y+z)-\mathcal{F}(x+z)-\mathcal{F}(y-x+z)-\mathcal{F}(x-z)\Vert \nonumber\\ &\leq \Vert \alpha (\mathcal{F}(x+y-z)+\mathcal{F}(x-z)-\mathcal{F}(y))\Vert + \Vert \beta (\mathcal{F}(x-z)\\ &+\mathcal{F}(x)-\mathcal{F}(z))\Vert \end{align*} where $\alpha$ and $\beta$ are fixed nonzero complex numbers with $\vert\alpha \vert +\vert \beta \vert<2$ by using the fixed point method.

Keywords