Remote Sensing (Oct 2024)

Tectonic Activity Analysis of the Laji-Jishi Shan Fault Zone: Insights from Geomorphic Indices and Crustal Deformation Data

  • Yujie Ma,
  • Weiliang Huang,
  • Jiale Zhang,
  • Yan Wang,
  • Dong Yu,
  • Baotian Pan

DOI
https://doi.org/10.3390/rs16203770
Journal volume & issue
Vol. 16, no. 20
p. 3770

Abstract

Read online

Fault segmentation plays a critical role in assessing seismic hazards, particularly in tectonically complex regions. The Laji-Jishi Shan Fault Zone (LJSFZ), located on the northeastern margin of the Tibetan Plateau, is a key structure that accommodates regional tectonic stress. This study integrates geomorphic indices, cross-fault deformation rate profiles, and 3D crustal electrical structure data to analyze the varying levels of tectonic activity across different segments of the LJSFZ. We extracted 160 drainage basins along the strike of the LJSFZ from a 30 m resolution digital elevation model and calculated geomorphic indices, including the hypsometric integral (HI), stream length-gradient index (SL), and channel steepness index (ksn), to assess the variations in tectonic activity intensity along the strike of the LJSFZ. The basins were categorized based on river flow directions to capture potential differences across the fault zone. Our results show that the eastern basins of the LJSFZ exhibit the strongest tectonic activity, demonstrated by significantly higher SL and ksn values compared to other regions. A detailed segmentation analysis along the northern Laji Shan Fault and eastern Jishi Shan Fault identified distinct fault segments characterized by variations in SL and ksn indices. Segments with high SL values (>500) correspond to higher crustal uplift rates (~3 mm/year), while segments with lower SL values exhibit lower uplift rates (~2 mm/year), as confirmed by cross-fault deformation profiles derived from GNSS and InSAR data. This correlation demonstrates that geomorphic indices effectively reflect fault activity intensity. Additionally, 3D crustal electrical structure data further indicate that highly conductive mid- to lower-crustal materials originating from the interior of the Tibetan Plateau are obstructed at segment L3 of the LJSFZ. This obstruction leads to localized intense uplift and enhanced fault activity. These findings suggest that while the regional stress–strain pattern of the northeastern Tibetan Plateau is the primary driver of the segmented activity along the Laji-Jishi Shan belt, the direction of localized crustal flow is a critical factor influencing fault activity segmentation.

Keywords