Sensors (Jul 2007)
Cluster-based Dynamic Energy Management for Collaborative Target Tracking in Wireless Sensor Networks
Abstract
A primary criterion of wireless sensor network is energy efficiency. Focused onthe energy problem of target tracking in wireless sensor networks, this paper proposes acluster-based dynamic energy management mechanism. Target tracking problem isformulated by the multi-sensor detection model as well as energy consumption model. Adistributed adaptive clustering approach is investigated to form a reasonable routingframework which has uniform cluster head distribution. Dijkstra’s algorithm is utilized toobtain optimal intra-cluster routing. Target position is predicted by particle filter. Thepredicted target position is adopted to estimate the idle interval of sensor nodes. Hence,dynamic awakening approach is exploited to prolong sleep time of sensor nodes so that theoperation energy consumption of wireless sensor network can be reduced. The sensornodes around the target wake up on time and act as sensing candidates. With the candidatesensor nodes and predicted target position, the optimal sensor node selection is considered.Binary particle swarm optimization is proposed to minimize the total energy consumptionduring collaborative sensing and data reporting. Experimental results verify that theproposed clustering approach establishes a low-energy communication structure while theenergy efficiency of wireless sensor networks is enhanced by cluster-based dynamic energymanagement.
Keywords