Remote Sensing (Dec 2023)

Sub-Nanosecond UTC Dissemination Based on BDS-3 PPP-B2b Service

  • Zhe Zhang,
  • Baoqi Sun,
  • Kan Wang,
  • Xiaohong Han,
  • Haiyan Yang,
  • Ge Wang,
  • Meifang Wu,
  • Yuanxin Wang,
  • Changjiang Geng,
  • Xuhai Yang

DOI
https://doi.org/10.3390/rs16010043
Journal volume & issue
Vol. 16, no. 1
p. 43

Abstract

Read online

The BeiDou-3 system (BDS-3) broadcasts PPP-B2b signals to provide real-time PPP service. Compared with the traditional PPP technique, the PPP-B2b service broadcasts corrections through satellite links, covers a wide area, and is independent of the internet. With the PPP-B2b service, users can obtain high-precision positioning information through the real-time PPP. Many studies have been conducted to evaluate the positioning performance of PPP-B2b. In theory, high-precision timing information could also be obtained through PPP-B2b. With the development of science and technology, the need for highly accurate time measurement, even at the sub-nanosecond level, is experiencing significant growth. However, the GNSS standard timing service can hardly meet these requirements. This contribution analyzes the timing performance of the PPP-B2b service and proposes a sub-nanosecond precise timing method of Coordinated Universal Time (UTC) based on the PPP-B2b service. BDS-3 and GPS observations from nine tracking stations and real-time collected PPP-B2b corrections over 516 days were used to analyze the performance of the proposed timing method. The results show that: (1) The difference between the PPP-B2b-restored UTC, which was realized by one-way timing with the UTC offsets in broadcast ephemeris, and UTC (NTSC), fluctuates within a few ns. (2) The timing uncertainty of the zero baseline based on the proposed method is better than 0.2 ns. (3) Compared with the post-processed PPP time transfer, the UTC dissemination uncertainty of the short and long baseline with the proposed method is better than 0.7 ns. The experiment results verified the feasibility of the proposed sub-nanosecond level precise UTC dissemination method based on the PPP-B2b service.

Keywords