Orphanet Journal of Rare Diseases (Nov 2017)

Indirect estimation of the prevalence of spinal muscular atrophy Type I, II, and III in the United States

  • Cathy Lally,
  • Cynthia Jones,
  • Wildon Farwell,
  • Sandra P. Reyna,
  • Suzanne F. Cook,
  • W. Dana Flanders

DOI
https://doi.org/10.1186/s13023-017-0724-z
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 6

Abstract

Read online

Abstract Background Spinal muscular atrophy (SMA) is a progressive, devastating disease and a leading inherited cause of infant mortality. The limited population-based literature is confined to small regional studies. Estimates of prevalence are needed to characterize the burden of SMA and to understand trends in prevalence by disease type as new treatments become available. The reported estimates of SMA genotype prevalence at birth consistently range from 8.5–10.3 per 100,000 live births, with a mid-range estimate of 9.4 per 100,000. Among infants born with an SMA genotype, it is reported that ~58% will develop SMA Type I, 29% will develop Type II, and 13% will develop Type III, respectively. Results Using evidence from peer-reviewed literature for SMA birth prevalence, age at symptom onset, and SMA type-specific survival, and incorporating United States vital statistics, we constructed life tables to estimate prevalence for SMA Types I, II, and III in the United States. We estimated the number of prevalent cases in the US to be 8526, 9429, and 10,333 based on a birth prevalence of 8.5, 9.4, and 10.3, respectively (the lower, midpoint, and upper ends of the reported range). Assuming the midpoint of 9.4 and US-reported survival, the type-specific population prevalence estimates were 1610 for SMA Type I, 3944 for SMA Type II, and 3875 for SMA Type III. Evidence-based estimates of the number of people living with SMA in the United States in the published literature were previously unavailable. Conclusions In the absence of a survey or other means to directly estimate prevalence in the US population, estimates can be calculated indirectly using a life table.

Keywords