Arabian Journal of Chemistry (Jan 2020)

Diazenyl schiff bases: Synthesis, spectral analysis, antimicrobial studies and cytotoxic activity on human colorectal carcinoma cell line (HCT-116)

  • Harmeet Kaur,
  • Siong Meng Lim,
  • Kalavathy Ramasamy,
  • Mani Vasudevan,
  • Syed Adnan Ali Shah,
  • Balasubramanian Narasimhan

Journal volume & issue
Vol. 13, no. 1
pp. 377 – 392

Abstract

Read online

A series of diazenyl schiff bases have been synthesized by reaction of salicylaldehyde containing azo dyes with various substituted aniline derivatives in the presence of acetic acid as catalyst. The structures of diazenyl derivatives were determined by FTIR, UV–vis, 1H NMR, 13C NMR, CHN analysis, fluorimetric and mass spectroscopic studies. The synthesized derivatives were screened for their in vitro antimicrobial activity against various Gram-positive (S. aureus, B. subtilis, B. cereus), Gram-negative (S. typhi, S. enterica, E. coli, P. aeruginosa) bacterial and fungal (C. albicans, A. niger and A. fumigatus) strains, using cefadroxil (antibacterial) and fluconazole (antifungal) as standard drugs. The diazenyl schiff bases were also screened for their cytotoxicity against human colorectal carcinoma cell line (HCT-116) using 5-fluorouracil as standard drug by Sulforhodamine-B Stain (SRB) assay. The schiff bases exhibited significant activity toward both Gram-positive, Gram-negative bacterial and fungal strains. Most of the synthesized derivatives showed high activity against S. enterica. 4-((2,5-Dichlorophenyl)diazenyl)-2-((3-bromophenylimino)methyl)phenol (SBN-40) was found to be very active against S. aureus, B. cereus and E. coli, with MIC = 0.69 (µM/ml × 102). The compound 4-((2-bromophenyl)diazenyl)-2-((4-nitrophenylimino)methyl)phenol (SBN-13) possessed comparable activity (IC50 = 7.5 µg/ml) to the standard drug 5-fluorouracil (IC50 = 3.0 µg/ml) against human colorectal carcinoma cell line (HCT-116). Keywords: Diazenyl, Schiff base, Antimicrobial, Anticancer, Fluorescence, Bathochromic