Toxicology Reports (Dec 2024)

Elucidating of the metabolic impact of risperidone on brain microvascular endothelial cells using untargeted metabolomics-based LC-MS

  • Surachai Ngamratanapaiboon,
  • Napatarin Srikornvit,
  • Patipol Hongthawonsiri,
  • Krittaboon Pornchokchai,
  • Siriphattarinya Wongpitoonmanachai,
  • Jiajun Mo,
  • Petchlada Pholkla,
  • Pracha Yambangyang,
  • Phichanan Duchda,
  • Jenyuk Lohwacharin,
  • Watcharaporn Devakul Na Ayutthaya

Journal volume & issue
Vol. 13
p. 101691

Abstract

Read online

Risperidone is useful for the treatment of schizophrenia symptoms; however, it also has side effects, and an overdose can be harmful. The metabolic effects of risperidone at high therapeutic doses and its metabolites have not been elucidated. Endogenous cellular metabolites may be comprehensively analyzed using untargeted metabolomics-based liquid chromatography-mass spectrometry (LC-MS), which can reveal changes in cell regulation and metabolic pathways. By identifying the metabolites and pathway changes using a nontargeted metabolomics-based LC-MS approach, we aimed to shed light on the potential toxicological effects of high-dose risperidone on brain microvascular endothelial cells (MVECs) associated with the human blood brain barrier. A total of 42 metabolites were selected as significant putative metabolites of the toxicological response of high-dose risperidone in MVECs. Six highly correlated pathways were identified, including those involving diacylglycerol, fatty acid, ceramide, glycerophospholipid, amino acid, and tricarboxylic acid metabolism. We demonstrated that methods focused on metabolomics are useful for identifying metabolites that may be used to clarify the mechanism of drug-induced toxicity.

Keywords