Membranes (Feb 2022)

TRPV4 Stimulation Level Regulates Ca<sup>2+</sup>-Dependent Control of Human Corneal Endothelial Cell Viability and Survival

  • Jennifer Donau,
  • Huan Luo,
  • Iiris Virta,
  • Annett Skupin,
  • Margarita Pushina,
  • Jana Loeffler,
  • Frauke V. Haertel,
  • Anupam Das,
  • Thomas Kurth,
  • Michael Gerlach,
  • Dirk Lindemann,
  • Peter S. Reinach,
  • Stefan Mergler,
  • Monika Valtink

DOI
https://doi.org/10.3390/membranes12030281
Journal volume & issue
Vol. 12, no. 3
p. 281

Abstract

Read online

The functional contribution of transient receptor potential vanilloid 4 (TRPV4) expression in maintaining human corneal endothelial cells (HCEC) homeostasis is unclear. Accordingly, we determined the effects of TRPV4 gene and protein overexpression on responses modulating the viability and survival of HCEC. Q-PCR, Western blot, FACS analyses and fluorescence single-cell calcium imaging confirmed TRPV4 gene and protein overexpression in lentivirally transduced 12V4 cells derived from their parent HCEC-12 line. Although TRPV4 overexpression did not alter the baseline transendothelial electrical resistance (TEER), its cellular capacitance (Ccl) was larger than that in its parent. Scanning electron microscopy revealed that only the 12V4 cells developed densely packed villus-like protrusions. Stimulation of TRPV4 activity with GSK1016790A (GSK101, 10 µmol/L) induced larger Ca2+ transients in the 12V4 cells than those in the parental HCEC-12. One to ten nmol/L GSK101 decreased 12V4 viability, increased cell death rates and reduced the TEER, whereas 1 µmol/L GSK101 was required to induce similar effects in the HCEC-12. However, the TRPV4 channel blocker RN1734 (1 to 30 µmol/L) failed to alter HCEC-12 and 12V4 morphology, cell viability and metabolic activity. Taken together, TRPV4 overexpression altered both the HCEC morphology and markedly lowered the GSK101 dosages required to stimulate its channel activity.

Keywords