Animal (Jan 2017)

Dynamics of myosin heavy chain isoform transition in the longissimus muscle of domestic and wild pigs during growth: a comparative study

  • G. Fazarinc,
  • M. Vrecl,
  • D. Škorjanc,
  • T. Čehovin,
  • M. Čandek-Potokar

Journal volume & issue
Vol. 11, no. 1
pp. 164 – 174

Abstract

Read online

Dynamics of myofiber differentiation/maturation in porcine skeletal muscle is associated with domestication, breeding and rearing conditions. This study was aimed to comparatively elucidate the age-dependent myosin heavy chain (MyHC) isoform expression and transition pattern in domestic and wild pig (WP) skeletal muscle from birth until adulthood. Domestic pigs (DPs) of Large White breed raised in conventional production system were compared with WPs reared in a large hunting enclosure. Muscle samples for immuno/enzyme histochemistry were taken from the longissimus dorsi muscle within 24 h postmortem at 24 to 48 h, 21 to 23 days, 7 months and ~2 years postpartum. Based on the antibody reactivity to MyHCs (NCL-MHCs, A4.74, BF-F3) and succinate dehydrogenase activity, myofibers were classified into I, I/IIa, IIa, IIx and IIb types. In addition, foetal MyHC expression was determined with the use of F158.4C10 antibody. Maturation of the longissimus dorsi muscle in the WP was characterized by an accelerated transformation of the fast to slow MyHC during the first hours postpartum, followed by differentiation towards oxidative myofibers in which type I, IIa and IIx MyHCs predominated. In the DP, the transformation shifted towards glycolytic myofibers that expressed MyHC-IIb. The expression of foetal MyHC was higher in the DP than in the WP at 1 day of age, and the decline in the foetal MyHC during the first 3 weeks was more rapid in the WP than in the DP denoting an accelerated early postnatal muscle maturation in WP than DP piglets. All foetal MyHC-positive myofibers co-expressed IIa isoform, but not vice versa. The intense myofiber hypertrophy was evident from 3 weeks until 7 months of age. In this period, the myofiber cross-sectional area increased up to 10- and 20-fold in the WP and the DP, respectively. In the DP, the hypertrophy of all myofiber types was more pronounced than in the WP, particularly the hypertrophy of IIx and IIb myofibers. To summarize, the comparison between growing DP with wild ancestors showed that genetic selection and rearing conditions lead to substantial changes in the direction and intensity of postnatal MyHC transformation as evidenced by different proportion of individual myofiber types and differences in their hypertrophic potential.

Keywords