Advances in Civil Engineering (Jan 2024)

Slope Stability Analysis of Mounded Storage Tank under Different Compaction Coefficients

  • Yunsheng Ma,
  • Zizhuo Tao,
  • Yu Zhang,
  • Zhenxue Liu,
  • Shengke Wei,
  • Fenghao Qing

DOI
https://doi.org/10.1155/2024/6682882
Journal volume & issue
Vol. 2024

Abstract

Read online

Mounded storage tank is to cover the storage tank with compacted soil on the ground to avoid steam cloud explosion, ensuring the stability and safety of the storage tank. In view of the influence of large diameter and surface radian of the tank, slope stability of mounded storage tank under different compaction coefficients has become the focus of research. In this paper, a series of laboratory tests were carried out to obtain the physical and mechanical parameters of the soil samples collected from the overburden of one specific engineering project. On this basis, Plaxis2D finite element software was used to establish a numerical model of the horizontal tank with a diameter of 7.6 m and a length of 76 m and the mounded slope with a height of 16.25 m as the research object. The effects of different compaction coefficients, slope angles, and overburden thicknesses on the slope stability of the mounded storage tank are investigated. Results indicate that the slope stability coefficients increase with the increase of compaction coefficient but decrease with the increase of slope angle and overburden thickness. Under the condition of the compaction coefficient 0.75–0.95, slope angle 30°–60°, and overburden thickness 0.5–1.3 m, the sensitivity ranking on the slope stability of mounded storage tank is: compaction coefficient, slope angle, and overburden thickness. The analysis results can provide an important theoretical basis and technical support for the safety and stability evaluation of mounded horizontal tank project.