Clinical and Experimental Emergency Medicine (Sep 2021)

Artificial neural network approach for acute poisoning mortality prediction in emergency departments

  • Seon Yeong Park,
  • Kisung Kim,
  • Seon Hee Woo,
  • Jung Taek Park,
  • Sikyoung Jeong,
  • Jinwoo Kim,
  • Sungyoup Hong

DOI
https://doi.org/10.15441/ceem.20.113
Journal volume & issue
Vol. 8, no. 3
pp. 229 – 236

Abstract

Read online

Objective The number of deaths due to acute poisoning (AP) is on the increase. It is crucial to predict AP patient mortality to identify those requiring intensive care for providing appropriate patient care as well as preserving medical resources. The aim of this study is to predict the risk of in-hospital mortality associated with AP using an artificial neural network (ANN) model. Methods In this multicenter retrospective study, ANN and logistic regression models were constructed using the clinical and laboratory data of 1,304 patients seeking emergency treatment for AP. The ANN model was first trained on 912/1,304 (70%) randomly selected patients and then tested on the remaining 392/1,304 (30%). Receiver operating characteristic curve analysis was used to evaluate the mortality prediction of the two models. Results Age, endotracheal intubation status, and intensive care unit admission were significant predictors of mortality in patients with AP in the multivariate logistic regression model. The ANN model indicated age, Glasgow Coma Scale, intensive care unit admission, and endotracheal intubation status were critical factors among the 12 independent variables related to in-hospital mortality. The area under the receiver operating characteristic curve for mortality prediction was significantly higher in the ANN model compared to the logistic regression model. Conclusion This study establishes that the ANN model could be a valuable tool for predicting the risk of death following AP. Thus, it may facilitate effective patient triage and improve the outcomes.

Keywords