PRX Quantum (Aug 2021)
Error-Detected State Transfer and Entanglement in a Superconducting Quantum Network
Abstract
Microwave photons are used to wire up modular quantum processors, but mitigating the effects of loss between modules remains a crucial challenge. We use a low-loss bus resonator to couple bosonic qubits across a superconducting network with protocols made robust to photon loss in the bus. We transfer a multiphoton qubit and track loss events, improving the fidelity to the break-even point with respect to the best uncorrectable encoding. We also demonstrate a entanglement protocol using Hong-Ou-Mandel interference and error detection to prepare a two-photon Bell state with fidelity 94% and success probability 0.79, halving the error obtained with a single photon. This network link also presents new opportunities for resource-efficient direct gates between modules.