Advances in Geosciences (Jan 2006)

On the potential of sub-mm passive MW observations from geostationary satellites to retrieve heavy precipitation over the Mediterranean Area

  • S. Pinori,
  • F. Baordo,
  • C. M. Medaglia,
  • A. Mugnai,
  • B. Bizzarri

Journal volume & issue
Vol. 7
pp. 387 – 394

Abstract

Read online

The general interest in the potential use of the mm and sub-mm frequencies up to 425 GHz resolution from geostationary orbit is increasing due to the fact that the frequent time sampling and the comparable spatial resolution relative to the "classical" (≤89 GHz) microwave frequencies would allow the monitoring of precipitating intense events for the assimilation of rain in now-casting weather prediction models. In this paper, we use the simulation of a heavy precipitating event in front of the coast of Crete island (Greece) performed by the University of Wisconsin - Non-hydrostatic Modeling System (UW-NMS) cloud resolving model in conjunction with a 3D-adjusted plane parallel radiative transfer model to simulate the upwelling brightness temperatures (TB's) at mm and sub-mm frequencies. To study the potential use of high frequencies, we first analyze the relationships of the simulated TB's with the microphysical properties of the UW-NMS simulated precipitating clouds, and then explore the capability of a Bayesian algorithm for the retrieval of surface rain rate, rain and ice water paths at such frequencies.