Cell Reports (Nov 2016)
Meiotic Nuclear Oscillations Are Necessary to Avoid Excessive Chromosome Associations
Abstract
Pairing of homologous chromosomes is a crucial step in meiosis, which in fission yeast depends on nuclear oscillations. However, how nuclear oscillations help pairing is unknown. Here, we show that homologous loci typically pair when the spindle pole body is at the cell pole and the nucleus is elongated, whereas they unpair when the spindle pole body is in the cell center and the nucleus is round. Inhibition of oscillations demonstrated that movement is required for initial pairing and that prolonged association of loci leads to mis-segregation. The double-strand break marker Rec25 accumulates in elongated nuclei, indicating that prolonged chromosome stretching triggers recombinatory pathways leading to mis-segregation. Mis-segregation is rescued by overexpression of the Holliday junction resolvase Mus81, suggesting that prolonged pairing results in irresolvable recombination intermediates. We conclude that nuclear oscillations exhibit a dual role, promoting initial pairing and restricting the time of chromosome associations to ensure proper segregation.
Keywords