EPJ Web of Conferences (Jan 2017)

Non-Dissipative Structural Evolutions in Granular Materials

  • Pouragha Mehdi,
  • Wan Richard

DOI
https://doi.org/10.1051/epjconf/201714002014
Journal volume & issue
Vol. 140
p. 02014

Abstract

Read online

The structure of the contact network in granular assemblies can evolve due to either dissipative mechanisms such as sliding at contact points, or non-dissipative mechanisms through the phenomenon of contact gain and loss. Being associated with negligible deformations, non-dissipative mechanisms is actually active even in the small strain range of ~ 10−3, especially in the case of densely packed assemblies. Hence, from a constitutive modelling point of view, it is crucial to be able to estimate such non-dissipative evolutions since both elastic and plastic properties of granular assemblies highly depend on contact network characteristics. The current study proposes an analytical scheme that allows us to estimate the non-dissipative contact gain/loss regime in terms of directional changes in the average contact force. The probability distribution of contact forces is used to compute the number of lost contact for each direction. Similarly, the number of newly formed contacts is estimated by considering the probability distribution of the gap between neighbouring particles. Based on the directional contact gain/loss computed, the changes in coordination number and fabric anisotropy can be found which, together with statistical treatments of Love-Weber stress expression, form a complete system of equations describing the evolution of other controlling microvariables. Finally, the results of the calculations have been compared with DEM simulations which verify the accuracy of the proposed scheme.