Frontiers in Immunology (May 2024)

Pathogenic role of different phenotypes of immune cells in airway allergic diseases: a study based on Mendelian randomization

  • Zhihan Xu,
  • Zhihan Xu,
  • Zhihan Xu,
  • Zhihan Xu,
  • Ren Li,
  • Ren Li,
  • Leigang Wang,
  • Yisha Wu,
  • Yisha Wu,
  • Yisha Wu,
  • Yisha Wu,
  • Yuhe Tian,
  • Yuhe Tian,
  • Yuhe Tian,
  • Yuhe Tian,
  • Yilin Su,
  • Yilin Su,
  • Yilin Su,
  • Yilin Su,
  • Yuqiang Ma,
  • Yuqiang Ma,
  • Yuqiang Ma,
  • Yuqiang Ma,
  • Ruiying Li,
  • Ruiying Li,
  • Ruiying Li,
  • Ruiying Li,
  • Yao Wei,
  • Yao Wei,
  • Yao Wei,
  • Yao Wei,
  • Chen Zhang,
  • Chen Zhang,
  • Chen Zhang,
  • Chen Zhang,
  • Shikai Han,
  • Shikai Han,
  • Shikai Han,
  • Shikai Han,
  • Siyu Duan,
  • Siyu Duan,
  • Siyu Duan,
  • Siyu Duan,
  • Haiyi Peng,
  • Haiyi Peng,
  • Haiyi Peng,
  • Haiyi Peng,
  • Jinmei Xue,
  • Jinmei Xue,
  • Jinmei Xue,
  • Jinmei Xue

DOI
https://doi.org/10.3389/fimmu.2024.1349470
Journal volume & issue
Vol. 15

Abstract

Read online

BackgroundAirway allergic disease (AAD) is a class of autoimmune diseases with predominantly Th2-type inflammation, mainly including allergic rhinitis (AR), allergic asthma (AS), and chronic sinusitis (CRS). There are very complex regulatory mechanisms between immune cells and AAD; however, previous reports found that the functions of the same immune cells in AAD are not identical.ObjectiveThe aim of this study was to explore the causal relationship between different phenotypic immune cells and their association with AAD.MethodUtilizing the publicly available Genome-Wide Association Studies (GWAS) database, this study conducted a bidirectional Mendelian randomization (MR) to assess the causal relationship between immune cells of 731 different immunophenotypes and AAD. The primary assessment methods included inverse variance weighting, weighted median, and MR Egger. Additionally, sensitivity analyses such as MR-PRESSO, leave-one-out, and scatter plots were employed to eliminate the interference of heterogeneity and pleiotropy, ensuring the stability of the causal inference.ResultA total of 38 immune cells with different immunophenotypes were found to be positively and causally associated with AR, of which 26 were protective factors and 12 were risk factors. Positive associations were found between 33 immune cells and AS, of which 14 were protective factors and 19 were risk factors, as well as between 39 immune cells and CRS, of which 22 were protective factors and 17 were risk factors. Finally, the results of all relevant immune cells for the three diseases were taken and intersected, and it was found that CD3 on CD39+-activated Treg (IVWAR = 0.001, IVWCRS = 0.043, IVWAS = 0.027) may be the key immune cell that inhibits the development of AAD (ORAR = 0.940, ORAS = 0.967, ORCRS = 0.976).ConclusionThis study reveals that different immune phenotypes of immune cells are closely related to AAD at the genetic level, which provides a theoretical basis for future clinical studies.

Keywords