Energies (Apr 2022)
Heuristic Optimization Approaches for Capacitor Sizing and Placement: A Case Study in Kazakhstan
Abstract
Two methods for estimating the near-optimal positions and sizes of capacitors in radial distribution networks are presented. The first model assumes fixed-size capacitors, while the second model assumes controllable variable-size capacitors by changing the tap positions. In the second model, we limit the number of changes in capacitor size. In both approaches, the models consider many load scenarios and aim to obtain better voltage profiles by minimizing voltage deviations and active power losses. We use two recently developed heuristic algorithms called Salp Swarm Optimization algorithm (SSA) and Dragonfly algorithm (DA) to solve the proposed optimization models. We performed numerical simulations using data by modifying an actual distribution network in Almaty, Kazakhstan. To mimic various load scenarios, we start with the baseline load values and produce random variations. For the first model, the optimization algorithms identify the near-optimal positioning and sizes of fixed-size capacitors. Since the second model assumes variable-size capacitors, the algorithms also decide the tap positions for this case. Comparative analysis of the heuristic algorithms shows that the DA and SSA algorithms give similar results in solving the two optimization models: the former gives a slightly better voltage profile and lower active power losses.
Keywords