Nanomaterials (Nov 2023)

Brightening and Directionality Control of Dark Excitons through Quasi-Bound States in the Continuum

  • Sebastian Klimmer,
  • Giancarlo Soavi,
  • Isabelle Staude,
  • Ángela Barreda

DOI
https://doi.org/10.3390/nano13233028
Journal volume & issue
Vol. 13, no. 23
p. 3028

Abstract

Read online

Thanks to their long lifetime, spin-forbidden dark excitons in transition metal dichalcogenides are promising candidates for storage applications in opto-electronics and valleytronics. To date, their study has been hindered by inefficient generation mechanisms and the necessity for elaborate detection schemes. In this work, we propose a new hybrid platform that simultaneously addresses both challenges. We study an all-dielectric metasurface with two symmetrically protected quasi-bound states in the continuum to enhance both the excitation and emission of dark excitons in a tungsten diselenide monolayer under normal light incidence. Our simulations show a giant photoluminescence signal enhancement (∼520) along with directional emission, thus offering distinct advantages for opto-electronic and valleytronic devices.

Keywords