Heliyon (Apr 2023)

Seed priming with plant growth-promoting bacteria (PGPB) improves growth and water stress tolerance of Secale montanum

  • Shiva Rahnama,
  • Elham Ghehsareh Ardestani,
  • Ataollah Ebrahimi,
  • Farzaneh Nikookhah

Journal volume & issue
Vol. 9, no. 4
p. e15498

Abstract

Read online

Abiotic and biotic stresses are major global threats to food security in the 21st century. Application of plant growth-promoting bacteria (PGPB) in rangeland plants is the only possible alternative that supports plant growth and development to combat environmental stress and successfully restoring rangelands. PGPBs were also found to be a potential substitute for chemical fertilizers and pesticides. The challenge is to determine which biofertilizers can be used for Secale montanum in normal and under water stress conditions. We sought to determine the benefits of PGPB for S. montanum under water stress conditions in terms of seedling growth traits, growth indicators, and nutrient uptake in the research greenhouse. Therefore, a completely randomized factorial design was conducted with two treatments of PGPB inoculation, including the control (no PGPB inoculation), PGPBs Bacillus cereus, Pseudomonas aeruginosa, Azospirillum lipoferm, and Azotobacter chroococcum, and water stress in the research greenhouse. Overall, the results of the current study showed that water stress greatly reduced the above-ground fresh weight of above-ground plant parts and the nitrogen and potassium content of S. montanum. The present study confirms the positive effects of PGPB on fresh and dry weights of above- and below-ground parts and seedling, vigor index, quality index, and nitrogen and potassium content of S. montanum, except for below-ground parts length, compared with the controls, which shows that PGPB usually improves some indicators of plant growth and development. We suggest that restoration of S. montanum seed inoculation with PGPB should be supported in degraded rangelands and marginal drylands in low rainfall years, which may cause water scarcity and consequently water stress in arid and semi-arid regions.

Keywords