Viruses (Mar 2023)

Development and Evaluation of an Enzyme-Linked Immunosorbent Assay Targeting Rabies-Specific IgM and IgG in Human Sera

  • Michelle D. Zajac,
  • Maria Teresa Ortega,
  • Susan M. Moore

DOI
https://doi.org/10.3390/v15040874
Journal volume & issue
Vol. 15, no. 4
p. 874

Abstract

Read online

Immunity from rabies depends on rabies virus neutralizing antibodies (RVNA) induced after immunization; however, the influence of antibody isotype switching has not been extensively investigated. This has become particularly relevant with changes in World Health Organization (WHO) recommended rabies vaccine regimens that may influence RVNA isotype kinetics, potentially affecting the peak, and longevity, of RVNA immunoglobulin (IgG) levels. We developed rapid and reliable assays for quantifying the anti-rabies IgM/IgG class switch in human serum based on an indirect ELISA technique. The immune response was tracked in ten individuals naïve to the rabies vaccine by quantifying serum titers weekly, from day seven to day 42 post-immunization, using a serum neutralization assay and the ELISA IgM/IgG assays. The average RVNA IU/mL levels were at D0 ≤ 0.1, D7 0.24, D14 8.36, D21 12.84, D28 25.74 and D42 28.68. Levels of specific IgM antibodies to rabies glycoprotein (EU/mL) were higher, on average, at D7, 1.37, and from D14, 5.49, to D21, 6.59. In contrast, average IgG antibodies (EU/mL) predominated from D28, 10.03, to D42, 14.45. We conclude that levels of anti-rabies IgM/IgG at D28 characterize the isotype class switch. These assays, combined with serum neutralization assays, distinguished the RVNA levels in terms of the IgM/IgG responses and are expected to add to the diagnostic repertoire, provide additional information in establishing rabies vaccine regimens, both post- and pre-exposure prophylaxis, and contribute to research efforts.

Keywords