Fixed Point Theory and Algorithms for Sciences and Engineering (Dec 2021)
Well-posedness analysis of a stationary Navier–Stokes hemivariational inequality
Abstract
Abstract This paper provides a well-posedness analysis for a hemivariational inequality of the stationary Navier-Stokes equations by arguments of convex minimization and the Banach fixed point. The hemivariational inequality describes a stationary incompressible fluid flow subject to a nonslip boundary condition and a Clarke subdifferential relation between the total pressure and the normal component of the velocity. Auxiliary Stokes hemivariational inequalities that are useful in proving the solution existence and uniqueness of the Navier–Stokes hemivariational inequality are introduced and analyzed. This treatment naturally leads to a convergent iteration method for solving the Navier–Stokes hemivariational inequality through a sequence of Stokes hemivariational inequalities. Equivalent minimization principles are presented for the auxiliary Stokes hemivariational inequalities which will be useful in developing numerical algorithms.
Keywords