Remote Sensing (Jun 2023)

Impact of Assimilating GK-2A All-Sky Radiance with a New Observation Error for Summer Precipitation Forecasting

  • Miranti Indri Hastuti,
  • Ki-Hong Min

DOI
https://doi.org/10.3390/rs15123113
Journal volume & issue
Vol. 15, no. 12
p. 3113

Abstract

Read online

In the assimilation of all-sky radiance (ASR), the non-Gaussian behaviour of observation-minus-background (OMB) departures has been the major issue. Treating observation error properly should give the distribution OMB departures closer to Gaussian on which data assimilation systems are based. This study introduces a look-up-table (LUT) observation error inflation (LOEI) for assimilating ASR from three water vapor channels of GEO-KOMPSAT-2A (GK-2A) geostationary satellite based on a three-dimensional variational data assimilation (3DVAR) framework. The impacts are assessed based on summer precipitation cases over South Korea. To confirm all kinds of radiance observations, the ASRs are assimilated without any quality control procedures. The LOEI adopt a pre-estimated radiance error statistics by using the higher order fitting function of cloud amount (CA) and standard deviation (STD) of OMB departures. This LOEI was produced during the summer period from August 1 to 30, 2020, representing the characteristics of the atmosphere condition during the experimental period. The promising impact of LOEI is demonstrated in comparison with the inflated observation error using a simple linier function proposed by Geer and Bauer (GBOEI). Study results revealed the LOEI normalized OMB departures into much more Gaussian form than the GBOEI. Hence, the assimilation of ASR using LOEI (ExpLOEI) produced BT analysis closer to the observation in four cloud phases in contrast with ASR assimilation using GBOEI (ExpGBOEI), which obviously found in the ice phase. The better BT analysis eventually simulated more realistic moisture and temperature variables in the background field. Consequently, the ExpLOEI exhibited more accuracy in precipitation location and intensity compared to the experiment with ExpGBOEI.

Keywords