Green Energy & Environment (Apr 2022)

Lithium-conductive LiNbO3 coated high-voltage LiNi0.5Co0.2Mn0.3O2 cathode with enhanced rate and cyclability

  • Haifeng Yu,
  • Shouliang Wang,
  • Yanjie Hu,
  • Guanjie He,
  • Le Quoc Bao,
  • Ivan P. Parkin,
  • Hao Jiang

Journal volume & issue
Vol. 7, no. 2
pp. 266 – 274

Abstract

Read online

LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode materials can operate at extremely high voltages and have exceptional energy density. However, their use is limited by inherent structure instability during charge/discharge and exceptionally oxidizing Ni4+ at the surface. Herein, we have developed a citrate-assisted deposition concept to achieve a uniform lithium-conductive LiNbO3 coating layer on the NCM523 surface that avoids self-nucleation of Nb-contained compounds in solution reaction. The electrode–electrolyte interface is therefore stabilized by physically blocking the detrimental parasitic reactions and Ni4+ dissolution whilst still maintaining high Li+ conductivity. Consequently, the modified NCM523 exhibits an encouraging Li-storage specific capacity of 207.4 mAh g−1 at 0.2 C and 128.9 mAh g−1 at 10 C over the range 3.0–4.5 V. Additionally, a 92% capacity retention was obtained after 100 cycles at 1 C, much higher than that of the pristine NCM523 (73%). This surface engineering strategy can be extended to modify other Ni-rich cathode materials with durable electrochemical performances.

Keywords