JVS - Vascular Science (Jan 2022)

S100A8 and S100A9 are elevated in chronically threatened ischemic limb muscle and induce ischemic mitochondrial pathology in mice

  • Zachary R. Salyers, MS,
  • Vinicius Mariani, MS,
  • Nicholas Balestrieri, MS,
  • Ravi A. Kumar, MS,
  • Nicholas A. Vugman,
  • Trace Thome, MS,
  • Katelyn R. Villani, MS,
  • Scott A. Berceli, MD, PhD,
  • Salvatore T. Scali, MD,
  • Georgios Vasilakos, PhD,
  • Terence E. Ryan, PhD

Journal volume & issue
Vol. 3
pp. 232 – 245

Abstract

Read online

Objective: The objective of the present study was to determine whether elevated levels of S100A8 and S100A9 (S100A8/A9) alarmins contribute to ischemic limb pathology. Methods: Gastrocnemius muscle was collected from control patients without peripheral arterial disease (PAD; n = 14) and patients with chronic limb threatening limb ischemia (CLTI; n = 14). Mitochondrial function was assessed in permeabilized muscle fibers, and RNA and protein analyses were used to quantify the S100A8/A9 levels. Additionally, a mouse model of hindlimb ischemia with and without exogenous delivery of S100A8/A9 was used. Results: Compared with the non-PAD control muscles, CLTI muscles displayed significant increases in the abundance of S100A8 and S100A9 at both mRNA and protein levels (P < .01). The CLTI muscles also displayed significant impairment in mitochondrial oxidative phosphorylation and increased mitochondrial hydrogen peroxide production compared with the non-PAD controls. The S100A8/A9 levels correlated significantly with the degree of muscle mitochondrial dysfunction (P < .05 for all). C57BL6J mice treated with recombinant S100A8/A9 displayed impaired perfusion recovery and muscle mitochondrial impairment compared with the placebo-treated mice after hindlimb ischemia surgery. These mitochondrial deficits observed after S100A8/A9 treatment were confirmed in the muscle cell culture system under normoxic conditions. Conclusions: The S100A8/A9 levels were increased in CLTI limb muscle specimens compared with the non-PAD control muscle specimens, and the level of accumulation was associated with muscle mitochondrial impairment. Elevated S100A8/A9 levels in mice subjected to hindlimb ischemia impaired perfusion recovery and mitochondrial function. Together, these findings suggest that the inflammatory mediators S100A8/A9 might be directly involved in ischemic limb pathology. : Clinical Relevance: Despite improvements in the surgical management of chronic limb threatening limb ischemia (CLTI), the rates of major adverse limb events have remained high. Skeletal muscle has emerged as a strong predictor of outcomes in peripheral arterial disease (PAD)/CLTI; however, a complete understanding of muscle pathology in CLTI is lacking. This study identified elevated S100A8 and S100A9 alarmin proteins as a characteristic of CLTI muscle specimens and that the S100A8/A9 levels are associated with the degree of mitochondrial impairment in patient limb muscle specimens. Using a mouse model of PAD, treatment with S100A8/A9 exacerbated ischemic limb pathology, including impaired limb perfusion recovery and muscle mitochondrial impairment. Taken together, these findings connect the inflammatory milieu in the CLTI limb to exacerbated limb muscle outcomes via mitochondrial alterations.

Keywords