Environmental Challenges (Aug 2023)

Aquaculture production, GHG emission and economic growth in Sub-Sahara Africa

  • Saul Ngarava,
  • Leocadia Zhou,
  • Patrick Nyambo,
  • Martin M Chari,
  • Orlando Bhungeni

Journal volume & issue
Vol. 12
p. 100737

Abstract

Read online

Aquaculture is a major source of protein in Sub-Saharan Africa (SSA), a region experiencing rapid population growth, changing lifestyles and preferences, and increased health awareness. However, the industry is still underdeveloped and is of a subsistence nature. Climate change has impacted aquaculture production (AQUAP) in SSA because of greenhouse gas (GHG) emissions. However, AQUAP activities also results in GHG emissions. In SSA, the causal effect of GHG emissions and AQUAP has not yet been empirically established and quantified. The objective of the study was to determine the relationship between GHG emissions and AQUAP in SSA. The parsimonious vector autoregressive (VAR) model was used in the study, with annual time series data of Gross Domestic Product (GDP), meat production (MP), GHG emissions, and AQUAP from 1970 to 2020. The findings demonstrate that AQUAP in SSA was suppressed until 2006 when it suddenly increased. Western and Central Africa have dominated AQUAP in SSA. GHG emissions were dropping sporadically until 1991 when they began to rise gradually. In both the long and short run, GHG emissions had a negative influence on AQUAP, while AQUAP had an asymmetric impact on GHG emissions. AQUAP impacts GDP positively in both the long and short run, and GHG emissions had an asymmetric impact on GDP. In conclusion, GHG emissions negatively affect AQUAP. In addition, AQUAP reduced GHG emissions in the short run but however increased it in the long run. This indicates the infancy of the sector in SSA, the initial phase of the Environmental Kuznets Curves (EKC). Furthermore, GDP is positively affected by both GHG emissions and AQUAP. This also cements the initial stages of the EKC, with economic development also powered by GHG emissions, with also the positive contribution of AQUAP to economic growth. Overall, the study concludes of initial economic, and aquaculture sectoral development powered by GHG emissions. However, this is also leading to increased emissions. The study recommends upscaling AQUAP in SSA given its infancy, huge economic potential, sustainability and low GHG emission potential but should be grounded on environmentally sustainable practices.

Keywords