Pharmaceutics (Apr 2022)
Transdermal Glipizide Delivery System Based on Chitosan-Coated Deformable Liposomes: Development, Ex Vivo, and In Vivo Studies
Abstract
The current study aimed to develop and evaluate a sustained-release transdermal Glipizide (GLP) film to overcome its oral administration problems. Chitosan (CS)-coated deformable liposomes (DLs) were utilized to enhance the drug transdermal delivery. The formulations were characterized in terms of particle size, zeta potential, entrapment efficiency (EE%), vesicle deformability, morphology, stability, and in vitro release. Transdermal films of chosen formulations were prepared by the solvent casting technique, and an ex vivo study throughout rat skin was also performed. Moreover, a pharmacokinetics (PK) study was carried out and blood glucose levels were estimated. All the liposomes were in the nanometer range and a high EE% was obtained from DLs compared to conventional liposomes (CL). The prepared formulations showed a high stability and the DLs exhibited a high deformability compared to CL. The in vitro release study confirmed the sustained release of GLP from both CL and DL and a more pronounced sustained release of GLP was detected after coating with CS. Moreover, GLP was shown to efficiently permeate through the rat skin from transdermal films by an ex vivo permeation test. The transdermal films showed a promising PK profile in the rat as compared with oral GLP. Most importantly, GLP-CS-DL1 demonstrated a higher hypoglycemic effect, confirming the possibility of systemic action by the local topical delivery of GLP.
Keywords