Physical Review Accelerators and Beams (Mar 2018)

Cross-wake force and correlated head-tail instability in beam-beam collisions with a large crossing angle

  • Nami Kuroo,
  • Kazuhito Ohmi,
  • Katsunobu Oide,
  • Demin Zhou,
  • Frank Zimmermann

DOI
https://doi.org/10.1103/PhysRevAccelBeams.21.031002
Journal volume & issue
Vol. 21, no. 3
p. 031002

Abstract

Read online Read online

This paper discusses novel coherent beam-beam instability in collisions with a large crossing angle. The instability appears in the correlated head-tail motion of two colliding beams. A cross-wake force, which is localized at the collision point, is introduced to represent the head-tail correlation between colliding beams. A mode-coupling theory based on this localized cross-wake force enables us to explain the correlated heal-tail instability. The use of a collision scheme with a large crossing angle is becoming popular in the design of electron–positron colliders. An example thereof is the SuperKEKB project, in which a collision with a large crossing angle is performed to boost the luminosity to 0.8×10^{36} cm^{-2} s^{-1}. Future circular colliders will also be designed with a large crossing angle. Strong-strong simulations, which have shown the first coherent head-tail instability, can limit the performance of proposed future colliders. The mechanism whereby this instability occurs is mode coupling due to the cross-wake force. This instability may affect all collider designs based on the crab waist scheme.