Applied Sciences (May 2022)

COVID-19 Chest X-ray Classification and Severity Assessment Using Convolutional and Transformer Neural Networks

  • Tuan Le Dinh,
  • Suk-Hwan Lee,
  • Seong-Geun Kwon,
  • Ki-Ryong Kwon

DOI
https://doi.org/10.3390/app12104861
Journal volume & issue
Vol. 12, no. 10
p. 4861

Abstract

Read online

The coronavirus pandemic started in Wuhan, China in December 2019, and put millions of people in a difficult situation. This fatal virus spread to over 227 countries and the number of infected patients increased to over 400 million cases, causing over 6 million deaths worldwide. Due to the serious consequence of this virus, it is necessary to develop a detection method that can respond quickly to prevent the spreading of COVID-19. Using chest X-ray images to detect COVID-19 is one of the promising techniques; however, with a large number of COVID-19 infected cases every day, the number of radiologists available to diagnose the chest X-ray images is not sufficient. We must have a computer aid system that helps doctors instantly and automatically determine COVID-19 cases. Recently, with the emergence of deep learning methods applied for medical and biomedical uses, using convolutional neural net and transformer applications for chest X-ray images can be a supplement for COVID-19 testing. In this paper, we attempt to classify three types of chest X-ray, which are normal, pneumonia, and COVID-19 using deep learning methods on a customized dataset. We also carry out an experiment on the COVID-19 severity assessment task using a tailored dataset. Five deep learning models were obtained to conduct our experiments: DenseNet121, ResNet50, InceptionNet, Swin Transformer, and Hybrid EfficientNet-DOLG neural networks. The results indicated that chest X-ray and deep learning could be reliable methods for supporting doctors in COVID-19 identification and severity assessment tasks.

Keywords