PLoS Pathogens (Feb 2023)

High-throughput saturation mutagenesis generates a high-affinity antibody against SARS-CoV-2 variants using protein surface display assay on a human cell.

  • Ye Yang,
  • Shuo Liu,
  • Yufeng Luo,
  • Bolun Wang,
  • Junyi Wang,
  • Juan Li,
  • Jiaxin Li,
  • Buqing Ye,
  • Youchun Wang,
  • Jianzhong Jeff Xi

DOI
https://doi.org/10.1371/journal.ppat.1011119
Journal volume & issue
Vol. 19, no. 2
p. e1011119

Abstract

Read online

As new mutations continue to emerge, the ability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus to evade the human immune system and neutralizing antibodies remains a huge challenge for vaccine development and antibody research. The majority of neutralizing antibodies have reduced or lost activity against SARS-CoV-2 variants. In this study, we reported a novel protein surface display system on a mammalian cell for obtaining a higher-affinity antibody in high-throughput manner. Using a saturation mutagenesis strategy through integrating microarray-based oligonucleotide synthesis and single-cell screening assay, we generated a group of new antibodies against diverse prevalent SARS-CoV-2 variants through high-throughput screening the human antibody REGN10987 within 2 weeks. The affinity of those optimized antibodies to seven prevalent mutants was greatly improved, and the EC50 values were no higher than 5 ng/mL. These results demonstrate the robustness of our screening system in the rapid generation of an antibody with higher affinity against a new SARS-CoV-2 variant, and provides a potential application to other protein molecular interactions.