Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine (Feb 2021)
Plasmatic and cell-based enhancement by microparticles originated from platelets and endothelial cells under simulated in vitro conditions of a dilutional coagulopathy
Abstract
Abstract Background Aggressive fluid management and other external factors may lead to hypothermia, acidosis and hemodilution (defined as Lethal Triad, LT) contributing to a trauma-induced coagulopathy (TIC) that worsens patients’ outcomes. Procoagulant microparticles (MP) are crucial players at the interface of cellular and plasmatic coagulation. However, their functions remain largely unexplored. This study aimed to characterize effects of MP subtypes and concentrations on functional coagulation under in vitro simulated conditions. Methods Blood from eleven volunteers were collected to simulate in vitro conditions of hemodilution (HD) and LT, respectively. HD was induced by replacing a blood volume of 33% by crystalloids and for LT, samples were further processed by reducing the temperature to 32 °C and lowering the pH to 6.8. MP were obtained either from platelet concentrates (platelet-derived MP, PDMP) or from cell culture (ECV304 cells for endothelial-derived MP, EDMP) by targeted stimulation. After introducing MP to in vitro conditions, we measured their concentration-dependent effects (1.000, 10.000 and 15.000 MP/μl blood) on coagulation compared to whole blood (WB). For each condition, coagulation was characterized by flow cytometric platelet activation and by quantification of fibrin clot propagation using Thrombodynamics® technology. Results MP originated from platelets and endothelial cells affected blood coagulation in a concentration-dependent manner. Particularly, high PDMP quantities (10.000 and 15.000 PDMP/μl blood) significantly induced platelet activation and fibrin clot growth and size in HD conditions. In LT conditions as well, only high PDMP concentration induced platelet activation, clot growth and size. In contrast, EDMP did not induce platelet activation, but resulted in enhanced formation of spontaneous clots, irrespective of simulated condition. With increasing EDMP concentration, the time until the onset of spontaneous clotting decreased in both HD and LT conditions. Discussion The study demonstrates an essential role of MP within the coagulation process under simulated coagulopathic conditions. PDMP affected platelets promoting clot formation likely by providing a surface enlargement. EDMP presumably affected clotting factors of the plasmatic coagulation resulting in an increased formation of spontaneous clots. Conclusion Under simulated conditions of a dilutional coagulopathy, MP from different cellular origin indicate a divergent but both procoagulant mechanism within the coagulation process.
Keywords